物体识别
尝试用创建三维模型方法去做物体识别。通常,事先定义一些基本的几何形状,然后把物体表示为基本几何形状的组合,然后去匹配图像。这时候识别问题变成了一个匹配问题。在三维模型库中去搜索可能的视角投影,跟待识别的图像进行匹配。如果找到较合适的匹配,就认为是识别成功了。
但是这么做并不是很有效。首先,很多物体很难用所谓的基本几何形状去描述它,特别是一些非刚体,比如动物;其次,对于一类物体,它可能会有丰富的类内差异性,即使是同一个物体在不同的姿态下也不一样,不可能每一种姿态都预先创建一个三维模型模板;第三,即使解决了之前的问题,如何才能准确地从图像中提取出 这些几何形状也存在困难。
物体识别
物体识别领域有了较大的发展。首先图像特征层面,人们设计了各种各样的图像特征,像SIFT,HOG,LBP等等。与此同时,机器学习方法的发展也为模式识别提供了各种强大的分类器。后来人们还在对物体建模方面做了一些工作,旨在用更灵活的模型,而不是单一的模板去定义物体。
随着人工智能、大数据和深度学习技术的不断发展,以及3D传感器、深度摄像头等硬件的不断升级,利用深度信息进行三维物体识别的技术,逐渐受到苹果公司等科技大牛和高通等厂商重视,并被植入到硬件产品中。
物体识别的困难与前景
虽然物体识别已经被广泛研究了很多年,研究出大量的技术和算法,物体识别方法的健壮性、正确性、效率以及范围得到了很大的提升,但是现在依然存在一些困难以及识别障碍。这些困难主要有:
获取数据问题:
在不同的视角对同一物体也会得到不同的图像,物体所处的场景的背景以及物体会被遮挡,背景杂物一直是影响物体识别性能的重要因素,场景中的诸多因素,如光源、表面颜色、摄像机等也会影响到图像的像素灰度,要确定各种因素对像素灰度的作用大小是很困难的,这些使得图像本身在很多时候并不能提供足够的信息来恢复景物。
以上就是关于北京智能识别桌厂家来电洽谈 华奕科技咱老百姓歌词全部的内容,关注我们,带您了解更多相关内容。