压电效应
某些单晶材料的结构具有非对称特性,当这些材料受到外加应力作用而产生应变时,其内部晶格结构的变化(形变)会破坏原来宏观表现为电中性的状态,产生极化电场(电极化),所产生的电场(电极化强度)与应变的大小成正比。某些材料在机械应力作用下,引起内部正负电荷中心相对位移而发生极化,导致材料两端表面出现符号相反的束搏电荷的现象,称为压电效应。这种现象称为正压电效应,它是由居里兄弟于1880年发现的。随后,在1881年又进一步发现这类单晶材料还具有逆压电效应,即具有正压电效应的材料在受到外加电场作用时,会有应力和应变产生,其应变与外电场的大小成正比。
压电效应是晶体结构的一个特性,它与晶体结构的非对称性有关,而压电效应的大小及性质则与施加的应力或电场对晶体结晶轴的相对方向有关。
具有压电效应的单晶材料种类很多,常用的如天然石英(SiO2)晶体,以及人工单晶材料如硫酸锂(Li2SO4)、铌酸锂(LiNbO3)等等。
电致伸缩效应
某些多晶材料中存在有自发形成的分子集团,即所谓“电畴”,它具有一定的极化,并且沿极化方向的长度往往与其他方向的长度不同。反之,当这类材料在外电场作用下,其内部正负电荷中心位移,又可导致材料发生机械变形,形变的大小与电场强度成正比。当有外加电场作用时,电畴会发生转动,使其极化方向与外加电场方向趋于一致,从而使该材料沿外加电场方向的长度将发生变化,表现为弹性应变。这种现象称为电致伸缩效应。
电致伸缩效应也有逆效应,即具有电致伸缩效应的多晶材料在经受外加应力产生应变时,其总的极化强度将会发生变化,即表现为电极化(产生电场)。
因此,电致伸缩效应可以说与电极化现象有关(自极化)。
压电式换能器的正负极区分
压电换能器是一般部分正负极的。因为压电换能器都是交流驱动。但象清洗,焊接换能器,为了方便,一般把跟前后盖板连接的电极认为是负极。检测用的换能器,如果是金属外壳的,一般会把金属外壳跟压电换能器其中一级接在一起,当屏蔽用,这个当负极。
压电式换能器的正负极区分
压电换能器是一般部分正负极的。因为压电换能器都是交流驱动。但象清洗,焊接换能器,为了方便,一般把跟前后盖板连接的电极认为是负极。检测用的换能器,如果是金属外壳的,一般会把金属外壳跟压电换能器其中一级接在一起,当屏蔽用,这个当负极。
压力传感器我们经常使用,我们在使用过程中一定要注意保护压力传感器,因为压力传感器虽然有不锈钢保护,但是压力传感器还是很容易损坏的,尤其的使用不当很容易造成压力传感器损坏导致损失。具有这种性能的陶瓷称为压电陶瓷,它的表面电荷的密度与所受的机械应力成正比。首先肯定是传感器超量程使用,不要施加超过额定耐压力的压力。若施加了耐压力以上的压力,可能引起破损。其次是使用环境,避免在有可燃性气体的环境下使用。还有就是电源电压和负载短路,使用时请不要超过使用电压范围。若施加了使用电压范围以上的电压,则可能引起或烧毁。避免使负载短路。否则可能引起或烧毁。还有一点比较少见就是误布线,避免对电源的极性等进行错误布线。否则可能引起或烧毁。压力传感器再在使用的时候一定要学会如何保护它,否则它很容易被损坏从而造成生产上的损失,当然只要我们按厂家说明书正确操作,避免上述的几个问题,压力传感器还是可以长时间工作的。有些压力传感器能用到几年甚至十几年。主要是要学会如何保护它。