超纯金属的制备有化学提纯法如精馏(特别是金属氯化物的精馏及氢还原)、升华、溶剂萃取等和物理提纯法如区熔提纯等(见硅、锗、铝、铟)。其中以区熔提纯或区熔提纯与其他方法相 结合有效。
由于容器与药剂中杂质的污染,使得到的金属纯度受到一定的限制,只有用化学方法将金属提纯到一定纯度之后,再用物理方法如区熔提纯,才能将金属纯度提到一个新的高度。经切头去尾,再利用多次拉晶和切割尾,一直达到所要求的纯度(10原子/厘米),这样纯度的锗(相当于13)所作的探测器,其分辨率已接近于理论数值。可以用半导体材料锗及超纯金属铝为例说明典型的超纯金属制备及检测的原理(见区域熔炼)。
各种类型的溅射薄膜材料在半导体集成电路(VLSI)、光碟、平面显示器以及工件的表面涂层等方面都得到了广泛的应用。20世纪90年代以来,溅射靶材及溅射技术的同步发展,极大地满足了各种新型电子元器件发展的需求。ITO靶制备的透明导电薄膜广泛应用于数码相机、投影电视、数码显示的各种光学系统中,全球需求量都很大。例如,在半导体集成电路制造过程中,以电阻率较低的铜导体薄膜代替铝膜布线。
在被溅射的靶极(阴极)与阳极之间加一个正交磁场和电场,在高真空室中充入所需要的惰性气体(通常为Ar气),磁铁在靶材料表面形成250~350高斯的磁场,同高压电场组成正交电磁场。
绑定的适用范围
技术上来说表面平整可进行金属化处理的靶材都可以用我司铟焊绑定技术绑定铜背靶来提高溅射过程的散热性、提高靶材利用率。
建议绑定的靶材:
ITO、SiO2、陶瓷脆性靶材及烧结靶材;
锡、铟等软金属靶;
靶材太薄、靶材太贵的情况等。
但下列情况绑定有弊端:
1.熔点低的靶材,像铟、硒等,金属化的时候可能会变软变形;
2.贵金属靶材,一是实际重量易出现分歧,二是金属化以及解绑的时候都会有浪费料,建议垫一片铜片。