检测对象:布匹缺陷
主要方法:作者使用一个多层的CNN网络对布匹缺陷数据集中的六类缺陷样本进行分类,分类结束之后,对于
每一类样本进行缺陷检测。具体做法是: 1.使用滑动窗口的方法在512*512的原图上进行采样,采样大小为
128*128 ; 2.对上部分每一类图像采样后的小图像块进行二 -分类(有缺陷和无缺陷)。下图为文章两次分类使
用的CNN网络,两次分类的区别在于: 1.全连接层的输入分别为6和2 ; 2输入的图像尺日
设备特点◆ 检测功能:对比工件(图标、颜色、纹理)于模板,从而判断被测物品是否存在瑕疵;◆ 对位功能:判断物体是否在期望的位置上,并反馈数据;◆ 测量功能:测量工件的长度、宽度、高度、角度、面积、体积;测量对象塑料薄膜产业(双拉膜、流延膜、吹膜、光学膜、薄膜涂布、塑料板材卫材薄膜等);无纺布产业(无纺布涂料、纺粘无纺布、水刺无纺布等);PCB产业(铜箔、Poly Preg、玻纤布、Cooper Laminate、PP纸等);一、成本低。机器视觉检测系统大大降低了厂的成本。
二、准确率高。通过机器视觉检测设备,可以每周7天,每天24小时不间断地生产高质量的产品,避免出现产品召回,产品责任索赔和图像损
坏等。.
三、安全性高。安全生产,产品可靠,机器视觉保证了生产过程中以及终产品的安全性。
苏州宣雄智能科技有限公司 苏州宣雄智能科技有限公司 苏州宣雄智能科技有限公司